Load Forecasting with Support Vector Machines and Semi-parametric Method
نویسندگان
چکیده
A new approach to short-term electrical load forecasting is investigated in this paper. As electrical load data are highly non-linear in nature, in the proposed approach, we first separate out the linear and the non-linear parts, and then forecast using the non-linear part only. Semi-parametric spectral estimation method is used to decompose a load data signal into a harmonic linear signal model and a non-linear trend. A support vector machine is then used to predict the non-linear trend. The final predicted signal is then found by adding the support vector machine predicted trend and the linear signal part. The performance of the proposed method seems to be more robust than using only the raw load data. This is due to the fact that the proposed method is intended to be more focused on the non-linear part rather than a diluted mixture of the linear and the non-linear parts as done usually.
منابع مشابه
A Hybrid Model for Short-Term Load Forecasting Based on Non- Parametric Error Correction
In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...
متن کاملAnnual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008
Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملDifferent Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
متن کاملTowards Accurate Electricity Load Forecasting in Smart Grids
Smart grids, or intelligent electricity grids that utilize modern IT/communication/control technologies, become a global trend nowadays. Forecasting of future grid load (electricity usage) is an important task to provide intelligence to the smart gird. Accurate forecasting will enable a utility provider to plan the resources and also to take control actions to balance the supply and the demand ...
متن کامل